PRACTICE QUESTIONS FOR COMPETITIVE EXAMS **SUB: MATHEMATICS VECTORS**

Q.1	Vector	r which	is equally	inclined	to	coordinate
axe	s such th	$ \vec{r} = 1$	$5\sqrt{3}$ is			
(A)	$\hat{i} + \hat{j} + \hat{k}$	202	(B) 15(î	$+\hat{j}+\hat{k}$		

- (C) $7(\hat{i} + \hat{j} + \hat{k})$ (D) None of these

Q.2 Let \vec{a} , \vec{b} , \vec{c} be three vectors such that $|\vec{a}| = |\vec{c}| = 1$; $|\vec{b}| = 4$ and $|\vec{b} \times \vec{c}| = \sqrt{15}$. If $|\vec{b}| - 2\vec{c} = \lambda \vec{a}$ then a value of 2 is

- (A) 1 (B) -1 (C) 2 (D) -4

Q.3 For 3 vectors u, v, w, which of the following expressions is \neq to any remaining three.

- (A) $\vec{u} \cdot (\vec{v} \times \vec{w})$ (B) $(\vec{v} \times \vec{w}) \cdot \vec{u}$

- (C) $\vec{v} \cdot (\vec{u} \times \vec{w})$ (D) $(\vec{w} \times \vec{u}) \cdot \vec{v}$

Q.4 If 2 out of 3 vectors a,b, c are unit vectors, a + b + c = 0 and 2(a.b + b.c + c.a) + 3 = 0, then third vector is length-

- (A) 3

- (B) 1 (C) 2 (D) None of these

Q.5 If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 3$, $|\vec{b}| = 5 \& |\vec{c}| = 7$ then $\angle \theta$ between a and b is

- (A) 40° (B) 30° (C) 150° (D) None of these

- Q.6 Magnitude of projection of vector $\hat{i} + 2\hat{j} + \hat{k}$ on vector $4\hat{i} + 4\hat{j} + 7\hat{k}$ is
 - (A) 3

- (B) $3\sqrt{6}$ (C) $\sqrt{6}/3$ (D) None of these
- Q.7 Magnitude of moment of force $-2\hat{i} + 6\hat{j} 8\hat{k}$ acting at point $2\hat{i} - \hat{j} + 3\hat{k}$ about point $\hat{i} + 2\hat{j} - \hat{k}$

- (A) $\sqrt{211}$ (B) 0 (C) $\sqrt{54}$ (D) None of these
- Q.8 i Let $\vec{a} + \vec{b}$ is orthogonal to \vec{b} and $\vec{a} + 2\vec{b}$ is orthogonal to a, then
 - (A) $|\vec{a}| = \sqrt{2} |\vec{b}|$ (B) $|\vec{a}| = 2 |\vec{b}|$

- (C) $\begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} = \begin{vmatrix} \vec{b} \\ \vec{b} \end{vmatrix}$ (D) $2 \begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} = \begin{vmatrix} \vec{b} \\ \vec{b} \end{vmatrix}$
- Q.9 If a & b are unit vectors represented by OA and OB, then unit vector along bisector of ZAOB is scalar multiple of

- (A) $\hat{a} \hat{b}$ (B) $\hat{a} \times \hat{b}$ (C) $\hat{b} \times \hat{a}$ (D) None of these
- If $\begin{bmatrix} 2\vec{a} + 4\vec{b} & \vec{c} & \vec{d} \end{bmatrix} = \lambda \begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix} + \mu \begin{bmatrix} \vec{b} & \vec{c} & \vec{d} \end{bmatrix}$ then $\lambda + \mu =$

- (A) 6 (B) -6 (C) 10 (D) None of these

- 0.11 3 Let a ,b, c be distinct non-negative numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, then c is (1993)
 - (A) The Arithmetic Mean of a and b.
 - (B) The Geometric Mean of a and b.
 - (C) The Harmonic Mean of a and b.
 - (D) Equal to zero.
- 0.12 The volume of the parallelepiped whose sides are given by $\overrightarrow{OA} = 2\hat{i} - 3\hat{j}$, $\overrightarrow{OB} = \hat{i} + \hat{j} - \hat{k}$, $\overrightarrow{OC} = 3\hat{i} - \hat{k}$, is (1983)

- (A) $\frac{4}{13}$ (B) 4 (C) $\frac{2}{7}$ (D) None of these
- Q.13 A vector a has components 2p and 1 with respect to a rectangular Cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to the new system, a has components p+1 and I, then (1986)
 - (A) p = 0

- (B) p=1 or p= $-\frac{1}{3}$
- (C) p = -1 or $p = \frac{1}{3}$ (D) p = 1 or p = -1
- Q.14 The unit vector which is orthogonal to the vector $3\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar with the vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$ is (2004)
 - (A) $\frac{2\hat{i}-6\hat{j}+\hat{k}}{\sqrt{41}}$
- (B) $\frac{2i-3j}{\sqrt{13}}$

 $(C)\frac{3\hat{j}-\hat{k}}{\sqrt{10}}$

(D) $\frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$

Q.15 If a,b,c are non-coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{(\vec{b} + \vec{c})}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} (1995)

- (A) $\frac{3\pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$
- (D) π

Q.16 If a and b are two unit vectors such that a + 2band 5a-4b are perpendicular to each other, then the angle between a and b is (2002)

- (A) 45°
- (B) 60° (C) $\cos^{-1}\left(\frac{1}{3}\right)$ (D) $\cos^{-1}\left(\frac{2}{7}\right)$

Q.17 Let $\vec{V} = 2\vec{i} + \vec{j} - \vec{k}$ and $\vec{W} = \vec{i} + 3\vec{k}$. If \vec{U} is a unit vector, then the maximum value of the scalar triple product [U V W] is (2002)

- (A) -1
- (B) $\sqrt{10} + \sqrt{6}$ (C) $\sqrt{59}$ (D) $\sqrt{60}$

Q.18 if the vectors $\vec{a} = \hat{i} - \hat{j} + \hat{2} + \hat{4}j + \hat{k}$ and $\vec{c} = \lambda \hat{i} + \hat{j} + \mu \hat{k}$ are mutually orthogonal then $(\lambda, \mu) =$ (2010)

- (A) (2, -3) (B) (-2, 3) (C) (3, -2) (D) (-3, 2)

Q.19! If $\begin{bmatrix} \vec{a} \times \vec{b} \vec{b} \times \vec{c} \times \vec{a} \end{bmatrix} = \lambda \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}^2$ then λ is equal to (2014)

- (A) 1
- (B) 3
- (C) 0
- (D) 1

Q.20 If the vectors $\overrightarrow{AB} = 3\hat{j} + 4\hat{k}$ and $\overrightarrow{AC} = 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is (2013)

- (A) √72

- (B) $\sqrt{33}$ (C) $\sqrt{45}$ (D) $\sqrt{18}$

ANSWERS: 1(B), 2(D), 3(C), 4(B), 5(B), 6(D), 7(B), 8(A), 9(A), 10 (A), 11(B)

12(B), 13(B), 14(C), 15(A), 16(B), 17(C), 18(D), 19(A), 20(B)